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ABSTRACT

Object-oriented data modeling is starting to replace the relational model for many

recently emerging database applications. The complex nature of these databases

precludes mapping of their data directly into a tabular relational structure. Current

object-oriented data modeling lack -1 .dardization and mathematical soundness of

the relational model. This thesis addresses tP-, problem oy proposing a conceptual data

model called OPERA (Object Paradigm / Entity Relationship Approach). OPERA

incorporates the static features of the Entity-Relationship (ER) Model with the dynamic

properties of object-orientation. In addition to OPERA, an object-oricted extension to

the graphical query language GORDAS (Graph-Oriented Data Selection) is proposed.

To demonstrate the effectiveness of the proposed model, we will model a United

States combat systems support database, the EWIRDB (Electronic Warfare Integrated

Reprogramming Database). We map the EWIRDB from its basic relational format to an

object schema and then to an OPERA graph. Finally, this conceptual schema is mapped

to a GORDAS schema graph and queries are performed on the database.

OPERA is conceptually superior to the ER Model and its object-oriented variant,

the Enhanced Entity-Relationship (EER) Model. We demonstrate this by representing

methods as relationship types, which the ER and EER models are incapable of. OPERA

also aids in query formulation for visual query languages such as GORDAS by providing

a query graph mapping template.

i1u.
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I. INTRODUCTION

A. BACKGROUND

A data model is a set of concepts which may be used to describe the structure of a

database, and also a set of operations which may be performed on it (Elmasri, 1989). Up

until the early 1960's, the only model for storing data was the traditional file system. With

the advent of the hierarchical and network data models in the mid to late 1960's, the idea

of a separate database management system (DBMS) evolved as a set of programs which

could enable users to create and maintain a set of related data called a database.

In 1970 the relational data model was introduced, and has become a standard for

many DBMS applications. A relational DBMS stores data in a logical tabular arrangement,

and its implementation is rather straightforward, since relational tuples and file records are

conceptually the same. In addition, the relational model allowed several high-level query

languages to be developed in the 1970's, including SQL, QBE, and QUEL, which were an

improvement over the data manipulation language (DML) of the network and hierarchical

models. By 1976, a conceptual model was introduced, the Entity-Relationship (ER)

Model, which could be used to map high-level database schemas directly into a relational,

hierarchical, or network implementation schema.

Although relational database management systems (RDBMS) have generally been

adequate for traditional business applications, they have proven insufficient for others.

Multimedia, computer-aided manufacturing and design (CAD/CAM) and artificial
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intelligence knowledge databases all have complex modeling and storage requirements

which the typical RDBMS cannot satisfy. The primary reason for this is that the relational

model forces segmentation of related data. That is, data which are spread out among

several relations (i.e., tables) lose their meaning as the database becomes more complex.

This is incompatible with advanced modeling concepts such as attribute inheritance and

aggregation found in object-oriented systems. For this reason, a new data model, the

object-oriented model, was developed for such applications.

Object-oriented data models are superior to the relational model in terms of their

abstraction capabilities. Unlike the relational model, data which describe a real-world

entity is consolidated in a single database object, which makes object-oriented modeling

more compatible with advanced database semantics. Unfortunately, object-oriented

modeling suffers from the fact that there is no standard through which all complex

databases may be represented.. The concept of the relation (Rosen, 1991), which is the

basis for RDBMS implementation models, and also integral to the ER Model of Chen

(1976), has become popular as a conceptual tool for database design. What is needed for

the object-oriented data model is a similr benchmark which provides a conceptual

framework for object-oriented database design and modeling, and which is based on an

established mathematical theory.

Since Chen's original paper on the ER model was published, there have been a

number of research papers discussing extensions to the basic model. Smith (1977)

introduced the abstract concepts of aggregation and generalization. Scheuermann (1979)
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showed that ER relationship types could be modeled as higher-level aggregate objects

Dos Santos (1979) derived complex data types from Chen's entity sets using mathematical

constructors. Elmasri (1989) incorporates these and other enhancements to the ER model

in an excellent discussion.

Hughes (1990) provides a good overview of object-oriented data modeling. The

graphical representation of object schemas used in this thesis is based largely on Bertino

(1993). A thorough examination of a representative object-oriented data model (ORION)

is found in Banerjee (1987). Bertino (1992) discusses the impact of the object-oriented

data model on query language design. The conceptual query language used in this thesis is

an extension of that proposed in Elmasri (1981 ).

A number of papers have been devoted to merging the ER and object-oriented

models. Kappel (1988), Lazimy (1989), Navathe (1988), and Gorman (1990) all propose

conceptual models which incorporate the static features of the ER model with the dynamic

ones of the object-oriented paradigm. The model developed in this thesis incorporates

ideas from these papers, but proposes a different method for representing the behavioral

aspect of the object model.

There are several issues addressed by this thesis. First, a general data model for an

object-oriented database schema must be established. Given this model, an abstract device

should be developed to represent it in an understandable and meaningful way. We

accomplish this by studying whether an existing or modified conceptual data model way be

mapped to an object-oriented schema. Assuming this can be done, the utility of an

3



object-oriented conceptual model must be examined. To do this, we see if the model

serves a purpose or has some application.

The objective of this research is to extend the ER model into a high-level graphical

representation for the object-oriented model, and thereby establish a common

mathematical foundation for the design of object-oriented database management systems

(OODBMS). In this thesis, a data model is proposed for representing object-oriented

schemas as abstractions. The model is graphical in nature; as such, it is a visual aid in

understanding the semantics of an object database. Constraints are modeled in a

diagrammatic fashion instead of a procedural one, and operations are discussed from the

viewpoint of data retrieval only (queries). The example military database which is chosen

for modeling is classified; however, only those elements which are unclassified have been

used for this study. It is assumed that the reader has a basic understanding of the ER

model.

B. ORGANIZATION

This thesis is composed of seven chapters. Chapter I is an introduction containing

information on the reasons for the research and the methods for accomplishment. Chapter

II discusses the Enhanced Entity-Relationship (EER) Model as an object-oriented

extension of the ER model. Chapter III provides a general overview of object-oriented

data modeling. Chapter IV proposes a conceptual model called OPERA (Object Paradigm

/ Entity-Relationship Approach) for representing an object-oriented database schema.

Chapter V compares different query languages for the object-oriented data model and

4



proposes an extension to a graphical query language (GORDAS) to support object

queries. Chapter VI uses the iesults of Chapters II through V to map a military application

database, the Electronic Warfare Integrated Reprogramming Database, to an object

schema and then an OPERA diagram. Chapter VII concludes with a review of thesis

objectives and recommendations for further research.
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II. THE ENHANCED ENTITY-RELATIONSHIP
MODEL

The Enhanced Entity-Relationship Model (Elmasri, 1989), or EER, is an extension

of the ER model which includes all of the concepts of Chen's model plus the following:

1. Superclass
2. Subclass
3. Specialization
4. Generalization
5. Category
6. Attribute Inheritance

The notion of abstract classification is demonstrated in the EER model in terms of

superclasses and subclasses. An entity type in the ER model is represented as a superclass

in the EER model. A particular superclass may be a subclass of another entity type (which

may be a superclass in its own right). Hence, a relationship exists between the two, called

a superclass/subclass relationship. The significance of this relationship lies in the fact that

all characteristics which describe the superclass also pertain to all of its subclasses;

however, a particular subclass may exhibit characteristics which are in addition to those of

its superclass, but also exclusive of other subclass types. To illustrate these concepts,

refer to Figure 1. This diagram represents a database containing information about a

company's employee base and how vehicles are assigned to it. Right away we notice a

significant difference from the ER model - the representation is hierarchical in nature.

Another difference is more subtle - the entity types EMPLOYEE, MANAGER, and

ENGINEERING MANAGER are now referred to as superclasses or subclasses,
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depending on their involvement in a specific relationship (the symbol 'U means subclass)

For example, EMPLOYEE is a superclass of MANAGER, while MANAGER is a

superclass of ENGINEERING MANAGER. In addition, PRODUCTION MANAGER

and SYSTEMS MANAGER are both subclasses of ENGINEERING MANAGER This

dualism would be hard to represent in standard ER form. The important observation about

such a hierarchy is that all subclasses descended (i.e., derived) from the root class (in this

case, EMPLOYEE), inherit all of its characteristics. This feature is known as attribute

inheritance. Hence, a SECRETARY is described by all the EMPLOYEE attributes (SSN,

Name, Job Type, Address, Birthdate) as well as its own specific one (Typing Speed).

The inheritance paradigm is also applicable to relationships: if a superclass/subclass

is related to another superclass/subclass not in its hierarchy, that relationship is also

inherited by all its successors. To illustrate, the EMPLOYEE class participates in a

relationship named COMPANY EMPLOYEE with another class (in a separate hierarchy)

called COMPANY. This relationship, as shown in Figure 1, shows that a member of the

COMPANY class may contain one or more members of the EMPLOYEE class, but must

contain at least one. Conversely, an EMPLOYEE must belong to only one COMPANY.

Since SECRETARY, TECHNICIAN, ENGINEER, MANAGER, SALARIED

EMPLOYEE, and HOURLY EMPLOYEE are subclasses of EMPLOYEE, they all

participate in this relationship as well. An important aspect of this model is that a subclass,

even though it has an independent existence with respect to some other classes in the

hierarchy, cannot exist as a member by itself. If a class is a subclass of another class, it is



also a member of that superclass This is the sub.vet hierarcht definmtion of

superclass/subclass relationships an entity A is a subset of entity B if every occurrence of

entity A is also an occurrence of entity B (Teory, 1986)

Specialization, as applied to the EER model, is the process of further classifying a

set of objects (i.e., a superclass) into more specialized subclasses. This specialization is

usually defined by some distinguishing characteristic of the entities which comprise the

superclass. To illustrate, in Figure 1 we have a superclass, EMPLOYEE, which contains

two specializations, one based on job type, another on method of payment. The set

I SECRETARY, TECHNICIAN, ENGINEER) contains entities which are employees but

are identified in a specialized role based on the job performed. Likewise, (SALARIED

EMPLOYEE, HOURLY EMPLOYEE} is a set of instances specialized based on their

type of income. The other subclass, MANAGER, is not a specialization, but a simple

subclass of EMPLOYEE. One interesting thing to observe about this figure is the

relationship BELONGS TO. In the ER model, this would have to be represented as a

relationship between EMPLOYEE and TRADE UNION; this is not as expressive as the

EER depiction. In the EER model, because of specialization, we know exactly what group

of employees may belong to such an organization: those who are hourly employees, and

no others.

Generalization in the EER model is simply the inverse process of specialization; it

is the process of grouping several classes into a higher-level abstract class that includes

objects in all these classes. Both specialization and generalization are similar; the former is
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a top-down conceptual refinement and the latter is a bottom-up conceptual synthesis

Otherwise, they are equivalent

As seen in Figure 1, a class may be shared by one or more higher-level classes. Such

a class is called a shared subclass. For example, the subclass ENGINEERING

MANAGER is shared by ENGINEER, MANAGER, and SALARIED EMPLC

Each of the superclass/subclass relationships involving a shared subclass is distinct.

ENGINEER/ENGINEERING MANAGER, MANAGER/ENGINEERING MANAGER,

and SALARIED EMPLOYEE/ENGINEERING MANAGER are separate relationships,

and as such ENGINEERING MANAGER inherits the attributes (i.e.,characteristics) of its

three superclasses all the way to the root of the hierarchy (EMPLOYEE). A structure

which contains a shared subclass is called a specialization lattice; if no shared subclasses

are present, a specialization hierarchy exists.

There are some situations where a lattice is not desired, that is, instead of a shared

subclass, we need to model a relationship where one subclass is related to multiple

superclasses in a single superclass/subclass relationship. How can this be done? The

category provides the answer. In Figure 1, vehicle registration for certain company

employees is modeled by the LEASED BY and OWNS relationships. These show that

only company employees who are engineering managers may lease a registered vehicle,

which in turn belongs to some other entity. The owner of a vehicle may be a person, bank,

or a company, but does not have to be all three. To represent this relationship properly,

the category OWNER is established, which is a subclass of the union of its superclasses

10



PERSON, BANK, and COMPANY. This union of superclasses is depicted graphically by

a connecting node containing the letter "U". The important detail to note about categories

is that they provide for selective inheritance; that is, a category only inherits attributes

from the superclass to which it is related. To illustrate, if a particular owner happens to be

a person, the attributes for BANK will not be passed along to that instance of OWNER

This was not possible with a shared subclass, since attributes of all the superclasses for a

shared subclass are inherited. While a category is the union of its related superclasses, a

shared subclass is the intersection of its superclasses; each has their modeling applications.

As was discussed earlier, a most important component of any data model is its set

of built-in constraints. In addition to the constraints which are part of the ER model, the

EER model contains the following additional constraints on specialization/generalization:

1. Subclass Membership
2. Disjointness
3. Completeness

As seen earlier, more than one specialization may exist within a hierarchy. The

specialization structure may be refined further to specify membership in a particular

subclass. There are three categories of subclass membership constraints which accomplish

this: predicate-defined, attribute-defined, and user-defined. With predicate-defined

subclasses, membership is determined by the value of some superclass attribute. The value

of the superclass EMPLOYEE attribute Job Type is known as the defining predicate of

the subclass, since it defines whether an entity will belong to the SECRETARY,

TECHNICIAN, or ENGINEER subclasses. The defining predicate condition is a

11



constraint which is indicated graphically by placing its value along the arc leading from the

connecting node to the subclass A second type of subclass membership constraint is the

attribute-defined constraint. This is similar to the predicate-defined constraint, except that

membership is determined by the value of the same superclass attribute for all subclasses.

This attribute is called the defining attribute of the specialization (or generalization), and

is depicted by showing its name on the arc leading from the superclass to the connecting

node. For the schema of Figure 1, the attribute Job Type of EMPLOYEE is the defining

attribute for {SECRETARY, TECHNICIAN, ENGINEER). A third type of subclass

membership constraint is user-defined. With user-defined membership, there is no built-in

condition which determines that an entity will belong to a subclass; the database user sets

this constraint himself. Such a constraint is specified individually for each entity entered

into the database.

In order to make the EER model complete, constraints must be specified on

membership within a specialization. In our example schema, the absence of any such

constraints might allow a member of the EMPLOYEE superclass to simultaneously exist

as both a SALARIED EMPLOYEE and HOURLY EMPLOYEE. This is not an accurate

reflection of the real world, for no employee of any company is salaried and paid on an

hourly wage scale at the same time. To resolve this dilemma, an additional constraint on

disjointness is provided. This constraint specifies whether duplicate membership is allowed

in a specialization. The disjointness constraint has two possible values, either disjoint or

overlapping. Disjointness is indicated graphically by the presence of the symbol (D) in a

12



connecting node, and overlapping subclasses are indicated by the presence of the symbol

(0) Subclasses which are overlapping within a specialization imply that the same entity

may coexist in distinct subclasses, whereas disjoint subclasses must not allow this. In

Figure 1, the ENGINEERING MANAGER superclass contains two overlapping

subclasses: PRODUCTION MANAGER and SYSTEMS MANAGER. This tells us that

an engineering manager may be in charge of systems, production, or some combination of

the two. Similarly, the EMPLOYEE superclass has a specialization with three disjoint

subclasses: SECRETARY, TECHNICIAN, and ENGINEER. This reflects the fact that

secretary, technician, and engineer are mutually exclusive job descriptions.

Finally, completeness must be specified for the model. This is an extension of the

participation constraints imposed by the ER model. The completeness constraint in the

EER model determines superclass entity participation in the superclass/subclass

relationship. Such a constraint may be total or partial. A total specialization constraint

mandates that every superclass entity be a member of some subclass, whereas partial

specialization allows an entity not to belong to any subclass. Figure 1 illustrates these

concepts. There is a total participation constraint between EMPLOYEE and the

specialization {SALARIED EMPLOYEE, HOURLY EMPLOYEE), indicated graphically

by a double-lined arc to the connecting node (the same graphic notation as ER existence

dependency). There is also partial participation between EMPLOYEE and

( SECRETARY, TECHNICIAN, ENGINEER). Do these constraints accurately reflect

the real world existence of database entities? Yes, because it is logical that an employee
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may be a secretary, technician, or engineer, or possibly none of the three It is also

apparent that a paid employee must be either given a salary or compensated by the hour

The EER model is now complete. But what is its real advantage? One view is that

the EER model enhances the database designer's ability to capture the real data

requirements accurately because it requires one to focus on greater semantic detail in the

data relationships. Also, abstraction techniques, such as generalization, provide useful

tools for integration of user views to define a global conceptual schema (Teory, 1986).

These tools are essential for complex designs such as CAD databases. Because of the

iterative nature of the (CAD) design process, designers cannot give a complete description

of the design at once; they provide a partial description, later completed by repeated

refinements. The iterative and tentative nature of the design process implies several

descriptions of the design object in the database at any time, and previous states of the

design must be available to designers working on the later states (Berzins, 1987).

14



III. THE OBJECT-ORIENTED DATA MODEL

A. INTRODUCTION

The EER is a high-level or conceptual data model. As such, it models some aspect

of the real world in a way which is similar to a person's perception of it At the opposite

extreme are physical data models, which describe how data is stored and arranged on

some physical medium. An implementation data model is a combination of the two- while

providing a reasonable representation for a higher-level schema, it also is not far removed

from a low-level structural model. (Elmasri, 1989)

The relational model is an implementation model, since its logical tabular

arrangement of data equates nicely to a physical record structure. Like the relational

model, the object-oriented model provides structure and meaning to a database, but goes

much further The distinguishing feature of such a model is its ability to easily represent

the dynamic nature of a database, that is, the operations which may be performed upon it.

In this chapter we examine the basic concepts of object-orientation. Then, using

these ideas, an object-oriented schema will be designed for a real-world database. Finally,

the EER and object-oriented data models are compared.

B. BASIC CONCEPTS

The fundamental concept supporting object-oriententation is chat of object. An

object represents a unique entity in the real world. It has its own identity independent of

any characteristics it may possess via an object identifier (OiD). In terms of database
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storage, an object may be differentiated from any other ob•-.ct by means of an OlD Hence

an object does not need a unique characteristic (i.e. ke' attribute) to uniquely identifR it.

the OID is a system-defined value.

An object may have both a state and a behavior The state of an object is

determined by the values of its instance variables (object properties) The behavior of an

object is provided by its methods. Methods are simply blocks of code which manipulate or

return the state of an object (Baneijee, 1987). They are implemented via encapsulation

and information hiding. A method is encapsulated when another object may access it only

through a common interface. This interface is called a message, which when sent by one

object invokes execution of a method on another. A method may return the state of its

object to another object by sending a return message. An object may also hide information

from other objects by having private methods which are innaccessible to them. A public

method may be accessed by any object.

Objects having similar properties and methods are grouped together in classes. This

concept, called classification, is an advantage both from a modeling and physical storage

viewpoint. For example, if a number of objects use the same method to return or change

their state, it would be wasteful to encode a procedure for each object. Instead, when a

method on an object is invoked, a common definition stored in a class object is used for all

objects belonging to a particular class. Similarly, class properties and class methods may

be defined which do not apply to any particular object, but to a group of objects.
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For an object to exist, it must be created. Instanuation is the process by which a

new object is created by sending a message to a class object. The class object ,,intains one

or more methods called constructor methods specifically for this purpose. In addition to

constructor methods, other methods exist (Hughes, 1991) which return or change the

state of an object. Accessor methods return the current state of an object, whereas

Class DEPARTMENT
Properties

DepartmentName: STRING
DepartmentNumber: INTEGER
Manager ID: STRING
Division: STRING
Number-of Employees: INTEGER

Methods
public

Create () : DEPARTMENT
Locations*(): STRING
AverageSalary (i): FLOAT
Add-Employee () : EMPLOYEE

private
MinimumSalary () : FLOAT
Maximum_Salary (: FLOAT

Figure 2. The Class DEPARTMENT

trans.ormer methods change its state and return a new object (i.e., the same object with a

different state). Destructor methods are similar in form to constructor methods, but

opposite in function. That is, they remove object instances from existence.

To illustrate the above concepts, refer to the example object-oriented schema of

Figure 2. This schema models an entity in the real world of business, a company
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department. Since company departments can be described as having a similar

representation for state and behavior, they are modeled as a class DEPARTMENT. An

object belonging to this class has certain characteristics, such as a name, a manager, and a

controlling division. It also has certain behaviors, or methods, which may be accessible or

not. For example, the constructor method Create may be invoked by an appropriate user

to create a new DEPARTMENT object. The accessor method Location returns a set of

one or more objects of type STRING (for example, different city names) indicating where

the company department exists. Another accessor method, Average Salary, computes the

mean wage paid to all employees in the department. Add Employee is a transformer

method which changes the state of the department by creating an object of class

EMPLOYEE and thereby modifying the instance variable Numberof Employees. Finally,

two private methods are used by the class object to update the minimum and maximum

salary each time a new employee is added to the department.

Another distinguishing feature of the object-oriented model is that of inheritance. It

is the most powerful concept of object-oriented programming (Bertino, 1993). Like the

concept of classification, inheritance is an effective storage and modeling technique. The

basic idea of inheritance is the superclass/subclass relationship, discussed in Chapter II.

The subclass assumes the properties and methods of its superclass (or superclasses) and

may define specific ones for itself. Suppose, for example, that the class DEPARTMENT

of Figure 2 could be logically separated into more than one type of object. Even though

these objects are similar in that they are all departments, they are functionally different in
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certain distinguishing ways. A department might specialize in production, sales, or

marketing. A production department may have a specific requirement to maintain

information concerning total time spent in producing a product or service. Accounting

data maintained by the sales department may consist of total and average sales during a

Class PRODUCTION DEPARTMENT
Superclass

DEPARTMENT
Methods

public
WeeklyProductHours () FLOAT
WeeklyServiceHours () FLOAT

Class SALESDEPARTMENT
Superclass

DEPARTMENT
Methods

public
Total WeeklySales () FLOAT
AverageSale Price () FLOAT

Class MARKETING DEPARTMENT
Superclass

DEPARTMENT
Methods

public
AverageCustomerAge (): FLOAT
CustomerMales ( ) INTEGER
CustomerFemales ()) INTEGER
MarriedCustomers (): INTEGER

Figure 3. Specialization of DEPARTMENT

specific time interval. Marketing, on the other hand, may need to know survey information

such as average age, sex, and marital status of customers. Figure 3 illustrates how the

schema of Figure 2 may be expanded to model these refinements. This schema format,
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derived from Hughes (1991) and Bertino (1992), defines a subclass by specifying its

superclass within the schema description. For example, SALESDEPARTMENT is a

subclass of the superclass DEPARTMENT, inheriting the properties and methods of

DEPARTMENT while specifying two additional methods, TotalWeekly-Sales and

AverageSalePrice, which are unique to SALESDEPARTMENT.

In addition to the basic concepts of the object-oriented model, there are other more

advanced modeling techniques which greatly enhance the expressiveness and utility of the

model. The ORION data model (Banerjee, 1987) proposes three major extensions:

composite objects, schema evolution, ana versions. A composite object is an object which

has properties whose domain consists of objects of another class; such domain objects are

called component objects. Component objects may be composite objects themselves,

leading to a composite object hierarchy. With such a hcrarchy, it is possible to model

extremely complex real-world objects in a natural fashion. An excellent discussion of

issues involving composite objects may be found in Kim (1989).

Schema evolution allows for a database schema to be dynamically defined and

modified while maintaining integrity and consistency of the database. ORION achieves this

by satisfying a set of schema invariants, which are object-oriented semantic integrity

constraints. For example, any change to a database class structure must result in a directed

acyclic graph, or tree structure. This is the class lattice invariant. Thefill inheritance

invariant ensures that a class must inherit the instance variables and methods of its

superclasses. In addition to invariants, which maintain the integrity of a database, rules for
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schema evolution exist which ensure that consistency is maintained. Among these are

default conflict resolution and property propagation rules, which establish how property

name clashes are resolved in multiple inheritance schemas and how properties are

propagated throughout the class hierarchy when a schema instance variable is modified.

Versions are alternate copies of the same object which are extremely important in

design databases. Through versions a history is maintained of how a specific version of an

object was created. Such version hfistories have significant implications in managing a

complex design project. Although beyond the scope of this thesis, Bertino (1993) provides

a good discussion of version modeling.

C. AN OBJECT-ORIENTED SCHEMA

A real-world database schema can be modeled with object-oriented concepts.

Suppose we have a database containing information describing medical services provided

by a health care facility (such as a hospital). A hospital may be divided into functional

units, or wards. A ward may specialize in a certain type of patient care, for example,

surgical, obstetric, or pediatric. Each ward has certain characteristics in common : a name,

number of employees assigned, and number of patients assigned. In addition, surgical

wards may keep track of the number of operations per day and postoperative infection

rate. Obstetric wards may need information on babies born per day, neonatal unit staffing,

and number of cesarean sections performed per day. A pediatric ward could keep a record

of average patient age and total incidence of bone fractures. With these requirements in
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mind, it is natural to model a ward as a superclass with subclasses for each of its three

specializations.

Each ward consists of a collection of patients. The data maintained for these people

might be address, social security number, name, phone number, blood type, sex, age, and

type of illness. Thus a patient is an object in its own right, and is modeled as a class.

One or more illness types are assigned to each patient. All illnesses are identified by

a name and primary treatment (such as drug therapy or surgery). Illnesses may either be

terminal or non-terminal. For terminal illnesses, cumulative patient deaths are recorded.

For non-terminal ones, average time for patients to recover is maintained. With this in

mind, an illness would be modeled as a superclass for curable and incurable diseases.

Finally, medical care is provided by trained hospital personnel. The medical staff

consists of doctors, nurses, and medical aides. For all medical personnel, the following

data is kept : home phone, name, sex, address, social security number, birthdate,

educational degree, workshift, and age. In addition, it is known what patients are assigned

to each staff member, who they supervise, what other staff members (if any) supervise

them, and what ward they are assigned to. Care providers who are physicians are also

identified by their annual malpractice premium and name of medical specialty (i.e.,

cardiologist, radiologist). Nurses have the additional property of licensing source (i.e., RN

or LPN). Medical aides are further described by the number of cumulative training hours

they have received in CPR, physical therapy, and patient hygiene.
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In producing an object-oriented schema for the hospital database, we use a format

similar to that of Figures 2 and 3. To make the model more concise, the distinction

between public and private methods is not shown, and constructor/destructor methods are

not given for each class :

Class MEDICAL STAFF
Properties

Name: STRING
Address: STRING
HomePhone: STRING
Sex: CHARACTER
SSN: STRING
Birthdate: DATE
Workshift: INTEGER
Degree: CHARACTER
WardAssigned: WARD
Supervisor: MEDICALSTAFF
Supervisees* : MEDICALSTAFF

Methods
Age( ) INTEGER
PatientsAssigned* (): PATIENT

Class PHYSICIAN
Superclass MEDICALSTAFF

Properties
MalpracticePremium: FLOAT
Specialty: STRING

Class NURSE
Superdass MEDICALSTAFF

Properties
Licensing: STRING

Class MEDICALAIDE
Superclass MEDICALSTAFF

Properties
CPR Hours: FLOAT
PhysicalTherapyHours : FLOAT
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PatientHygieneHours -FLOAT

Class WARD
Properties

MedicalStaffAssigned* MEDICALSTAFF
Methods

Number of Employees () : INTEGER
Number of Patients () I INTEGER
PatientsAssigned* (): PATIENT

Class SURGICALWARD
Superclass WARD

Methods
OperationsPerDay (): INTEGER
Post_OpInfectionRate () FLOAT

Class OBSTETRICWARD
Superdass WARD

Properties
NeonatalUnitCapacity• INTEGER

Methods
BirthsPerDay (): INTEGER
Cesareans_PerDay (): INTEGER

Class PEDIATRICWARD
Superclass WARD

Methods
TotalBone_Fractures ( )" INTEGER
Average_PatientAge () FLOAT

Class PATIENT
Properties

Name: STRING
Address: STRING
Room Number: STRING
HomePhone: STRING
Sex: CHARACTER
SSN: STRING
Birthdate DATE
Blood_Type: STRING
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WardAssigned WARD
MedicalStaffAssigned* MEDICALSTAFF
Illnesses* ILLNESS

Methods
Age ) INTEGER

Class ILLNESS
Properties

Name:STRING
PrimaryTreatment STRING

Methods
AffectedPatients* () PATIENT

Class TERMINALILLNESS
Superclass ILLNESS

Methods
CumulativePatientDeaths () INTEGER

Class NON-TERMINALILLNESS
Superdass ILLNESS

Methods
AverageRecovery_Time (): FLOAT

In the hospital schema, some characteristics are modeled as methods instead of

properties. This would depend on the implementation; in general, information which is

subject to frequent change may be modeled by methods for efficiency of implementation.

For example, the Age method is a derived attribute of classes MEDICALSTAFF and

PATIENT. The ages of patients and employees may be directly calculated from their

birthdates, which do not change (and hence are properties). Similarly, the

PatientsAssigned method, which returns a set of objects of class PATIENT, is better

modeled as a method, since it is a dynamic characteristic. Also note that

CumulativePatientDeaths, the method for subclass TERMINAL_ILLNESS, and
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AverageRecoveryTime, the method for subclass NON-TERMINALILLNESS, are

both class methods, since they tabulate data for groups of ILLNESS objects. On the other

hand, TotalBoneFractures is an object method for PEDIATRICWARD, since it only

calculates data for a specific object (the pediatric ward).

D. CONCLUSION

The object-oriented model and the EER model are similar in many respects. Both

model object-oriented concepts such as inheritance, superclass/subclass relationships,

generalization, and specialization. In the EER model, an entity represents a unique

member of a superclass or subclass. The analogous construct in the object-oriented model

is the object. EER entity types have attributes; the object-oriented equivalent is the

property (i.e., instance variable).

Nevertheless, there are noticeable differences. First of all, the EER is a conceptual

model. It represents the real world in a way which is very natural to understand,

graphically showing relationships and constraints among entity types. Conversely, the

object-oriented model is an implementation model. As such, it gives more detail as to how

objects are represented in a database. That is, data types of class properties are displayed

in a schema. Uniqueness of an entity is represented by a key attribute in the EER model;

the OlD performs this function for object-oriented model. In addition, there is no EER

equivalent for the composite object. The greatest difference between the two models,

however, is how database dynamics are illustrated. Whereas the object-oriented model has

methods, the EER has no such capability. Hence, the EER provides us with an excellent
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conceptual vehicle for describing a database, while the object-oriented model allows us to

model both state and behavior. In the next chapter, we will merge these two capabilities.
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IV. A CONCEPTUAL OBJECT-ORIENTED MODEL

A. INTRODUCTION

In the last chapter the object-oriented data model was introduced and compared to

the EER model. In this chapter, both models are combined into a high-level graphical

model called OPERA (Object Paradigm/Entity-Relationship Approach). This model is

capable of expressing database constraints, operations, and logical data relationships

between object classes. OPERA proposes to bridge the gap between the

entity-relationship and object-oriented data models by integrating the mathematical

relation and the method in a visual representation of a database. Once formulated, OPERA

will be used in the remainder of the thesis to aid in object-oriented query formulation

(Chapter V) and to model and query a complex military database (Chapter VI).

B. THE GRAPHICAL OBJECT-ORIENTED
SCHEMA EXPRESSION

Before merging the object-oriented and EER models, it is helpful to express both of

them graphically. Since the EER is already a conceptual schema, only the object-oriented

implementation model needs to be converted. This modification, called the Graphical

Object-Oriented Schema Expression (GOOSE), is a visual object-oriented schema

adapted from Bertino (1993). It makes the transformation to an OPERA diagram easier by

pictorially displaying links between classes and, unlike the Bertino model, incorporates

EER constraints on superclass/subclass relationships.
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Figure 4 shows the basic schema template. A class (or subclass) is modeled as a

rectangular block. This is similar to the EER representation. Within the block, the

properties of the class (i.e., attributes of the entity type) are modeled as in the

object-oriented implementation schema. Each property is linked to a primitive domain,

such as INTEGER or STRING, by a colon (:), or to a complex domain, such as a

SUPERCLASS
Property-l: DOMAIN
Property_2*: DOMAIN

Property_3*

Property4

Method_l(): DOMAIN
Method_2*()

i.. TiSgle line = Partial Subclass Puticipanon
DDouble line = Total Subclass Panicipation

0 = overimplog
D = Disjoint

SUBCLASS SUBCLASS 2
Property-1 DOMAIN opry10

Methodi () etho*( ).IOMAINI

Figure 4. GOOSE Template

composite object class, by an arrow (-+). Properties may be single-valued or multivalued,

that is, they may return a single object or a set of objects. Single-valued and multivalued

property domains may be primitive or complex; multivalued properties are denoted by an

asterisk (*). In addition, class properties are italicized. Methods are represented in a
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similar way, but are separated from properties by a bold line. The parenthesis following a

method name represents its functional nature. That is, method activation is modeled as a

procedure call. As SUBCLASS_1 illustrates, a domain link may be recursive in nature. In

other words, the domain of a method (or property) may consist of objects belonging to

that method's (or property's) class. Finally, constraints and the ISA relationship are

modeled as in the EER.

We are now ready to model an object-oriented implementation schema in a GOOSE

diagram. The hospital database schema of Chapter III will be used for this purpose. Recall

that in this schema, hiere are four superclasses (MEDICALSTAFF, WARD, PATIENT,

ILLNESS) and eight subclasses (PHYSICIAN, NURSE, MEDICALAIDE, SURGICAL

_WkRD, OBSTETRICWARD, PEDIATRICWARD, TERMINAL_ILLNESS,

NON-TERMINAL_ILLNESS). The methods and properties can be mapped directly from

the object-oriented schema, whereas the constraints may be derived from the verbal

description of the database. The complete GOOSE schema is illustrated in Figure 5.

C. OPERA

The OPERA model is a graphical representation of the state and behavior of an

object-oriented database. Since it combines the entity-relationship and object-oriented data

models, the EER and GOOSE diagrams will be integrated into a common description. To

facilitate this, the behavioral aspect of the object-oriented approach, the method, must be

presented conceptually.
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Recall from the discussion of Chapter III that a method models a functional

capability. That is, when an object sends a message to another object, a method (identified

by the message syntax) may be executed by the object receiving the message. In return,

the receiving object may send a return message, which may contain state information or

invoke a method on the sending object. In mathematical terms, this is a logical mapping

from one set to another. Suppose we have two sets A and B as shown in Figure 6. Set A

•-•rrg• ~(a) _.•.•

O0jectA Set

mmbb)

mn b)

Figure 6. Set Mapping with Methods

consists of n elements, and set B consists of m elements. That is, A = (a, , a2 , a) and

B = {b, , b2 , ... , b.). A method may be defined as a mapping from one set (i.e., class) to

another. In the case where a method returns the state of one element (i.e., object) to

another, we may model this transformation as nm(s), where r r R and s E S, with R the set

of receiving elements and S the set of sending elements. This situation is depicted in

Figure 6 by nrb(a), which represents a method executed by an object of A (in response to a
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message from an object of B) with a return of some state information from the A object to

the B object. Similarly, B may map into A. Note also that a method may map one set into

itself We may model this as m,(S), where s e S, and S is any set (i.e., class) which has

some method (mJ which returns elements of its containing set. In Figure 6, we see this

type of method execution with mb(b), which indicates a change of state for set B or some

other information returned only to set B.

We have indicated the mathematical equivalence of the set and class. Likewise, the

terms element and object are considered the same. A mathematical set consists of

unordered, discrete elements. This corresponds to the class, which consists of distinct

objects (each with a unique OLD) which are logically unordered (although physically

ordered in a database). Using this premise, we will now show the mathematical

equivalence of the method and relation.

Suppose there are two sets X and Y. The set X is said to be a subset of Y if and

only if every element of X is also an element of Y. We may express this as:

XQY if" Vx(xe X -+ xE Y).

Now suppose there are two sets Y and Z. The cartesian product of Y and Z, denoted

YxZ, is the set of all ordered pairs (y,z) where yr Y and zE Z. This may be expressed as:

YXZ = ((y,z) I yE Y A ZE Z ).

Given that a set is equivalent logically to an object class, and a set element is equivalent to

an object, we may substitute the classes A and B of Figure 6 for the sets Y and Z above.

We may think of a method as an ordered pair of objects, since a method mr(b) obtains
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state information from object a and sends it to object b, forming an ordered pair (a,b).

Since (a,b) represents a subset of AxB, the method may be though of as:

ma(b) ; AxB.

However, given two sets A and B, a binary relation from A to FB is a subset of AxB.

Therefore, the method is mathematically equivalent to the relation.

We are now in a position to develop a high-level, conceptual representation for an

object-oriented implementation schema. Starting with a GOOSE diagram and a miniworld,

that is, a verbal description of the database and its constraints, we may proceed to an

OPERA diagram as follows:

1. For each GOOSE superclass, construct an OPERA superclass by mapping the
superclass name into an EER entity set.

2. For each GOOSE subclass, construct an OPERA subclass by mapping the subclass
name into an EER entity set.

3. For each GOOSE superclass/subclass relationship, map constraints directly into the
OPERA diagram, thus forming a link between OPERA superclass entity sets and
subclass entity sets.

4. For each domain link in a GOOSE diagram, form an EER relationship type in the
OPERA diagram. Label the relationship type with the names of the classes at the
origin and destination of the link. If the domain link is recursive (same origin and
destination class), label the relationship type with a role name.

5. For GOOSE methods and properties with primitive domains, no relationship type
is mapped to the OPERA diagram. Such methods and properties are not explicitly
represented in OPERA.

6. For GOOSE methods and properties with single-valued domain links, initially label
the corresponding OPERA relationship type cardirtality as 1:1. If the inverse of this
method or property exists on another class with a multivalued domain link, or if
the miniworld description explicitly states a many-to-one cardinality, relabel the
OPERA relationship type cardinality as N: 1.
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7. For GOOSE methods and properties with multivalued domain links, initially label
the corresponding OPERA relationship type cardinality as 1 :N. If the inverse of
this method or property exists on another class with a multivalued domain link, or
if the miniworld description explicitly states a many-to-many cardinality, relabel the
OPERA relationship type cardinality as M:N.

8. Alter determining the relationship cardinality in steps 6-7, assign participation
constraints between OPERA class entity sets based on the miniworld description.
Partial and existence dependency are shown as in the EER model.

We are now in a position to generate an OPERA diagram for the hospital database

schema, whose miniworld was described in Chapter III. From this description and the

GOOSE diagram of Figure 5, the OPERA schema is derived following the mapping

scheme in steps 1-8. The conceptual view of the hospital database is shown in Figure 7.

D. CONCLUSION

The GOOSE diagram is an intermediate step between the object-oriented

implementation schema of Chapter 1H and the high-level OPERA schema derived from it.

GOOSE serves primarily as a conceptual aid in visualizing an implementation schema.

However, it also incorporates object-oriented characteristics of the EER model, which

eases the task of mapping to OPERA. Although OPERA does not offer an improvement

over the GOOSE diagram in terms of gross database description, it simplifies a schema by

abstracting out implementaion details (such as domain representations) and transforming

domain links into relationship types.

Although the OPERA and EER schemas look alike, they are significantly different.

For example, an EER representation shows all attributes of each class, including key

attributes, which uniquely identify an entity. In OPERA, attributes (i.e., properties and
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methods) are not explicitly shown. In fact, there are no key attributes, since each object is

uniquely identified by an implicit OiD. In this way OPERA abstracts a database to the

highest conceptual level, without regard to lower level details of implementation.

Another significant difference between the two models is in the treatment of

methods. In the EER, methods are not represented. In OPERA, a method which has a

complex domain is modeled as a relationship type-owing to its theoretical equivalence to

the mathematical relation. Methods which have primitive domains are treated like

primitive properties; they are both considered to be details of implementation, and

therefore not explicitly modeled in OPERA. As we will see in the next two chapters, this

higher level of abstraction is beneficial when choosing an appropriate query language for

the object-oriented model and in describing relational databases in object form.
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V. OBJECT-ORIENTED QUERIES

A. INTRODUCTION

A very important part of any data model is the set of operations which may be

performed on it. These operations may exist to construct a database schema (e.g.,

CREATE) or modify it (e.g., DELETE). In general, these are system-defined and not

easily modified; in fact, there is usually no need to. Another type of operation which is

required by a database user is the , I. Queries exist primarily for the purpose of

extracting information from a database. An effective query language has several

characteristics, among which are conciseness, semantic integrity, and efficiency of data

retrieval. In this chapter, queries are examined from a semantic viewpoint; this is deemed

important for object-oriented data models, which rely on ease of understanding to model

real-world entities effectively.

Several different approaches to object-oriented queries will be examined. First, a

mathematical model upon which many object query languages are based, called

object-oriented predicate calculus (OOPC), will be reviewed. Next, two generic object

query model languages, GOMql and GOMsql, are studied. Then, a query language

developed for the ORION prototype object-oriented database system is examined. Finally,

a query model based on the entity-relationship data model, GORDAS, is expanded to

incorporate object queries. A sample object schema is queried using the different query

languages and the semantic efficiency of these approaches is compared.
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B. OBJECT-ORIENTED PREDICATE
CALCULUS (OOPC)

One of the criticisms of object-oriented data models is the lack of a standard

mathematical foundation. The relational data model, on the other hand, has no such

problem. The mathematical concept of relation provides its basis and, through relational

calculus, supports the associated query languages (such as SQL). OOPC (Bertino, 1992)

attempts to bridge this mathematical gap by extending the relational predicate calculus to

object-oriented queries..

An OOPC query has the following syntax: {Target clause; Range clause;

Qualification clause). The target clause specifies the data to be retrieved by the query. It

may be a variable representing an object in the schema or a property of an object. The

form it takes is either (x} or {x.AJ , where x is a variable bound explicitly to a class in

the range clause, and A is a property of the class bound to x. The range clause indicates

an explicit binding of a variable to a schema class. This scope of this binding is both the

target clause and qualification clause. For example, the range clause {x/C} means that any

variable x in a query formulation represents an object of class C. The qualification clause

contains the selection criteria, i.e., predicates, which specify which object is chosen for

retrieval; the data from this selected object (or objects) is returned in the form of the target

clause. The format for the qualification clause is { G Range clause (Qualification clause)),

where 8 is either the universal (V) or existential (3) quantifier. (Qualification clause) is a

Boolean combination of predicates connected by the logical and (A), or (v) or not (-.
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An example query is the best way to illustrate the use of OOPC. Referring to the

schema of Figure 8, a user of the database might need to know the salary of all presidents

of companies which have a manufacturing division. The query could be formulated as:

Query 1: (x.salary; x/Employee; 3 y/Company (x.name = y.president.name A
y. divisions, name = "manufacturing"))

Note the use of the dot operator (.) in the query. A path expression such as

{y.divisions.name) functions as an imicit join; that is, the classes Company and

Division are examined without need of an explicit equality comparison between a

common property (as is the case in a relational query). Also, this path expression returns a

set of objects in the course of navigation - {y.divisions} returns a set of objects which are

divisions of a single company. Each of these, in turn, returns its name, which is then

compared for equality with "manufacturing". To make this query more efficient (and more

meaningful), OOPC allows for a quantifd ih epression. This is helpful when returning

sets of objects in the course of query navigation; in the case of existential predicates, it

allows the query to resolve without returning all possible set objects. For example, the

above query may be changed to :

Query ]A: (x.salary; x/Employee; 3 y/Company (x.name = y.president.name A
y.3 divisions.name = "manufacturing'))

The semantics are clearer here; for every company, its divisions are searched until one

with the name "manufacturing" is found. Once found, the predicate evaluates to true, and

the query may be resolved.
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COMPANY EMPLOYEE ADDRESS
Naze:STRING 6.Name: STRING Counuy:STRING

Locaion ddres - _r City:STRING'
Diviions Salry: LOATNumber: INT

l~reideL__=MangerStreetSTRING

Dep entZipcode:INT

DIVISIONV

DEPARTMENT VflL

Lcense:STRINC
Manaers*YearJNT

,Make:STRING
Model:STRINGJ

olo.STRING

Figure 8. Company Database Schema
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Methods, like properties, must be incorporated into an object-oriented query

language. In OOPC, they both have the same form in a query path expression. For

example, a requirement may exist to determine the name and address of all department

managers who earn more than $50,000 per year and drive a company car with a year

model prior to 1985. A possible query might be:

Query 2: {x.name,x.address; x/Manager; 3 y/Department (x E y.managers A
x.salary > 50000 A x.3 vehicles().year < 1985)}

This query illustrates the problem of how data is retrieve,' from a subclass specified in a

schema. Manager is a subclass of Employee; x could be bound to this superclass in the

range clause, but the query semantics would suffer (in addition to retrieving the wrong

result - all employee names and addresses vice managers). However, x can be bound to

Manager and still project the name and address properties in the result, since these

properties are inherited from the Employee class. Another issue raised by this query is how

to restrict the set of managers to those of departments. This is done in OOPC via the

mbi predicat {x e y.managers}. Finally, this example shows how methods are

handled in a query path expression - just like properties. This should be expected, since a

method (vehicles( ) in this case) returns an object (or set of objects), and a property

domain consists of an object (or set of objects). Hence, from the viewpoint of query

semantics, methods and properties are identical.

A feature characteristic of object-oriented data models is specialization of

superclasses via subclasses. In Figure 8 the class Vehicle is specialized in the two
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subclasses Car and Truck, which have some common properties, and some which are

unique. Suppose a user needs to query the database to retrieve the license numbers of all

red mid-engine vehicles and blue long-bed vehicles. A possible query might be :

Query 3: {x.license; x/Vehicle; (x.color = "red" A x.enginelocation = "mid") v
(x.color = "blue" A x. bedtype "long')

Given the schema of figure, will this query retrieve the correct data? Although clear in

semantics, it is incorrect in execution. The problem arises from the fact that x is bound to

Vehicle in the range clause; when a Car object is examined during query execution, an

error occurs when the property bedtype is examined, because a Car object does not have

such an attribute. The same problem occurs with Truck objects and the engine location

property. OOPC resolves this dilemma with the CLASSOF operator:

Query 3A: (x.license; xlVehicle; CLASS_OF(x) =
[Car : x.color = "red" A x. engine location = "mid";

Truck: x.color = "blue" A x. bed type = 'Vong"])

This construct is called an altrnative predicat; the CLASSOF operator applied to a

predicate binds the predicate variable to the class designated at the head of the predicate

clause. In the above example, x is bound to Car in the first predicate clause; in the second

clause, x is bound to Truck. Hence, the CLASSOF operator allows a type of

polymorphism for binding variables within the qualification clause of the query. Although

the semantics are obscured somewhat, the correct result is obtained.
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C. GENERIC OBJECT MODEL (GOM) QUERIES

1. GOMql

GOMql (Kemper, 1994) is a high-level, stand-alone declarative query language

based on the relational query language QUEL. It is very similar in form to OOPC, but its

semantics are a bit clearer. The format of a GOMql query is:

range v" C , ... , v C,
retrieve v, ... , vn
where P(v, ,... , v)

In the range clause, the variables v, ... , v, represent bindings to classes C, ..... C,. In the

retrieve clause, v, ,... vý are objects bound to classes in the range clause; these objects

may be class properties cr od results. The where clause contains the selection

predicate(s) P which are evaluated to produce the query results specified in the retrieve

clause. Path expressions of the form v, .name,' .name, ... .namen, where v, is a variable

bound in the range clause and name, .. .name. are class properties or methods, may be

elements of the retrieve and where clauses. The range, retrieve, and where clauses of

GOMql query are analogous to the range, target, and qualification clauses of an OOPC

query. For example, Query I (retrieve the salary of all presidents of companies which

have a manufacturing division) is formulated in GOM as:

Query 4: range e: Employee, c: Company, d. Divisions
retrieve e.salary
where e.name = c.president.name

and exists d in c.divisions (d name = "manufacturing)
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Note the use of the exists and in operators; these perform the same function as the

existential quantifier in OOPC. Like the existential quantifier, they must have as arguments

variables which represent a set of objects. Here, d is a variable representing a set value; if

one element of the set {c.divisions) is found which satisfies the equality predicate, it is

selected. A similar operator, forall, exists in GOMqI to function as a universal quantifier in

queries.

Query 2 ( determine the name and address of all department managers who earn

more than $50,000 per year and drive a company car with a year model prior to 1985)

may be written in GOMqI in a similar fashion:

Query 5: range m: Manager, d: Department, v: Vehicles
retrieve m.name
where m in dmanagers and re.salary > 50000

and exists v in m.vehicles (v.year < 1985)

Note the use of the implicit existential quantifier in. This limits the managers bound to

variable m to those also bound to variable d (m in d.managers}.

Query 3 ( retrieve the license numbers of all red mid-engine vehicles and blue

long-bed vehicles) posed a problem for OOPC in that the query semantics were impacted

by the hierarchical nature of the object schema. In GOMql, the use of the exists operator

greatly improves the meaning of this query, and eliminates the need for an explicit

CLASSOF operator:
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Query 6: range v: V ehicle, c: Car, t: Truck
retrieve v. license
where exists c in v (c. color = "red" and c. enginelocatlon =

"mid") or
exists t in v (t. color = "blue" and t. bed type = "long")

2. GOMsql

GOMsql (Kemper, 1994) is patterned after the standard relational query

language SQL and the object query language OSQL. It has three parts to its query

format, like OOPC and GOMql, and its format is:

select v, ...... v
from v, in (Class, I Nested query expression,), ... vý in (Class,, Nested

query expression)
where P(v,, ... , v,)

The select clause is the equivalent of the OOPC target clause; the variables v, ... V

represent class properties or method results, and may be a path expression. The from

clause is the range clause of OOPC, and like it, establishes bindings between variables

v, ...v and Class, ... Class. via the in operator. However, a binding may also be

established from a variable to a nested query expression (which returns a collection of

objects). The where clause contains selection predicates (as in the OOPC qualification

clause) and may also contain nested queries.

To demonstrate the use of a nested query binding in the from clause, suppose a

query is needed to retrieve all managers from the Plymouth Division of Chrysler Motor

Company who earn more than $50,000 (refer to the schema of Figure 8). Such a query

might be written as:
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Query 7: select m
from m in

(select d managers
from d in

(select c. divisions
from c in Company
where c.name = "Chrysler")

where d name = "Plymouth")
where m.salary -- 50000

Nested query expressions are evaluated from the innermost to outermost as in relational

SQL. Although sL. - nesting is possible, and may be useful at times in the from clause, a

shorter query can usually be formulated using path expressions. Query 7 could be changed

to read:

Query 7A: select m
from m in Manager, c in Company, d in Division
where (c.name = "Chrysler') and (din c.divisions)

and (dname = "Plymouth") and (m.salay > 50000)

This version of the query is more concise than Query 7, and is easier to understand.

Queries 1, 2, and 3, previously written for OOPC and GOMql, are now written as

Queries 8,9, and 10 for GOMsql:

Query 8: sdect e.salary
from e in Employee, c in Company, d in Division
where e.name = c.president.name and

c.d&visions in
(select d
from d in D: ,ision
where d name = "Manufacturing")
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Query 9: select m.name, re.address
from m in Manager, d in Department, v in I Vhicle
where m in

(select d manager
from d in Department)

and m.salary > 50000
and
v in

(select m. vehicles
from m in Manager
where m. vehicles.year < 1985)

Query 10: select v. license
from v in Vehicle, c in Car, t in Truck
where v in

(select c
from c in Car
where c. color = "red" and c. engine location =
"mid')

or
v in

(select I
from t in Truck
where t.color = "blue" and t.bed_type = "long")

These three examples all use nested queries in the outer where clause in order to select a

set, or collection, of objects(which is equivalent to a class). It is from this temporary

collection that objects bound in the from clause are examined for membership.

D. ORION QUERY LANGUAGE

Banerjee (1988) proposes a formal model of queries under the object-oriented data

model for ORION. In this model, a query is implemented as a series of messages sent to

objects in an aggregation hierarchy. An aggregation hierarchy exists in an object-oriented

schema when the domain of some class property has as its domain another class, and this
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class in turn has a property domain which is also a class; such a schema may be defined

recursively in terms of composite objects. In Figure 8 several aggregation hierarchies are

apparent. Objects of class Company are composite, having three properties with class

domains : Location, Divisions, and President. Each of these properties has one or more

associated aggregation hierarchies. For example, a hierarchy for Divisions is:

Divisions-Departments" Managers-> Vehicles( )+License

This hierarchy is the basis for the ORION query language syntax, and is the logical

eqivalent of a path expression in other query languages.

An ORION query is a series of messages which return a result in the form of a set

of objects belonging to a li clas.Q This restriction has ramifications on the allowable

queries which may be formulated, as will be shown later. The format of the query, based

on the Smalltalk object-oriented programming language, is :

(Receiver Object Selector Iteration Variable Query Expression)

Receiver Object is either a set object which refers to a collection of objects (i.e., a class),

or a single object. Iteration Variable is a variable (preceded by a colon) which binds the

Receiver Object instances to the same variable appearing in the Query Expression.

Selector is a message sent to Receiver Object; it returns a set of instances of Receiver

Object based on the evaluation of Query Expression. This expression returns true or false

based on the resolution of predicates, and consists of code blocks which may contain other

queries.
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To illustrate the use of the ORION query syntax, suppose the database represented

by the schema of Figure 8 must be searched to determine all companies located in New

York City which have a president who resides in the same city. The query may be written

as:

Query 11 : (Company select :C (.:C City = "NewYork"
and (:C President Address City = "New York")

)
)

The resolution of this query is explained as follows. The select message is sent to the

Company object, which is bound to variable :C. In the query expression, to each object

bound to :C, the "City" message is sent, and this returns the value of the City property of

Company (which is an object). This object is sent the message "=" with the argument

"New York" ; the result is a Boolean value (True/False) depending on the value of City.

The message "and" is in turn sent to this Boolean object, with its argument the result of

the next code block. If both code blocks in the query expression evaluate to true, the

instance of Company bound to :C is selected for the result set of the query; the query is

resolved when iteration of :C over all objects in Company is complete.

In order to compare the semantics of the ORION query language with OOPC,

GOMql, and GOMsql, the three queries wriiten for these languages will be translated into

the Smalltalk-like syntax of ORION. Recall Query 1, which requests the salary of all

presidents of companies which have a manufacturing division:
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Query 12 :
(Company select :C (:C Divisions some :D

(:D Name = 'Manufacturing')
)

)
President Salary

)

Note the use of the some selector message in the query expression. This selector returns

true, and hence select chooses :C for the result set, if there is a = =ast o instance of a

division (bound to :D) which has a name attribute domain equal to the string value

"Manufacturing". This is ORION's version of the existential quantifier; a similar message

selector all functions as the universal quantifier. Finally, it is interesting to observe that

the inner query returns objects of class Company, and the message "President Salary" is

sent to this set object (a subset of all objects of class Company) to return the result of the

outer query.

As mentioned previously, the restriction on object types in the result set of an

ORION query can impact the possible queries which may be devised. For example, Query

2, which requires both the name and address of all department managers who earn more

than $50,000 per year and drive a company car with a year model prior to 1985, cannot be

written in ORION because of the single object class limitation for the result set. However,

it may still be formulated as two separate queries. The query returning the name is:
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Query 13 :
(Department Managers select :M ( :M Salar, '50000

and (:M 1 "ehicles some : F
(: V Year,- 1985)

)
)

)
Name

)

The query returning the address is identical, with the "Address" message substituted for

the "Name" message.

Query 3, retrieve the license numbers of all red mid-engine vehicles and blue

long-bed vehicles, could be proposed as:

Query 14: (
(*Vehicle select : V (: V Color = "red"

and (: VEngine location = "mid')
or (: V Color = "blue")
and(: VBed type = "long')

)
)
License

In this query, the asterisk operator (*) further defines the function of the select message

to retrieve all instances of Vehicle ad jig subclasses. This poses the same problem that

occured with Query 3 in OOPC; if on a particular iteration of the query, the Vehicle object

bound to :V is sent the "Engine_location" message, an error may occur in processing the

query if an object of class Truck (for which Engine_location is undefined) is queried. To

solve this problem, the query must be divided into separate queries:
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Query 14A: (
(Car select :C (:C Color = "red"

and (:C Engine location = "mid')
)

)
License

)

Query 14B: (
(Truck select T (: T Color = "blue"

and (: T Bed type = "long")
)

)
License

E. GORDAS

GORDAS (Elmasri, 1981) is a formal high level query language based on Chen's

entity-relationship (ER) model. It is unique from a semantic standpoint in that no variables

are required in formulating queries; as will be seen, this is one reason queries in GORDAS

are somewhat easier to understand than some other languages. Also, queries in GORDAS

are derived directly from a high-level conceptual representation of a database schema. As

a result, a more natural language query interface is possible. Unfortunately, the language is

not designed specifically for object-oriented database schemas. To solve this problem, an

extension of the base conceptual model is proposed.

GORDAS is well-described by its name (.Graph-Oriented Data Selection). The first

step in making GORDAS queries is to construct a high-level conceptual schema from an

implementation schema. This conceptual schema will be the OPERA schema developed in

Chapter IV. This schema is then mapped into a directed graph called the schema graph, or
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SG, which represents the intension of the database to be modeled. GORDAS queries are

derived directly from the SG.

First, the GOOSE schema diagram of Figure 8 must be transformed into an OPERA

model'representation. Figure 9 is the result of this mapping. The schema graph (Figure 10)

is formed from the OPERA schema as follows:

1. For each superclass entity type in the OPERA schema, construct a corresponding
node in the SG. Each such node is labeled (ES, <entity set name>, <:>, <attribute
names>). This is the entity set ES1 .

2. For each subclass entity type in the OPERA schema, construct a corresponding
node in the SG. Each node is labeled (ES, <entity set name>, <:>, <attribute
names>). Only attribute names specific to the subclass are named. This is the entity
set ES2.

3. The entity set ES = ES, u ES2 .
4. For each relationship type in the OPERA schema, construct a corresponding node

in the SG. Each such node is labeled (RS, <relationship set name>, <:>, <attribute
names>). This is the relationship set RS.

5. Nodes are numbered consecutively beginning at one. Two nodes may not have the
same number.

6. Color all relationship nodes identically; color all entity nodes identically, but
different from relationship nodes.

7. For each superclass/subclass ES node, construct an undirected link labeled by the
subset symbol ( c ).

8. For each entity-relationship pair, construct a link which is directed from the ES
node to the RS node. Label this link (<far entity name, near entity name>,<:>,
<constraint c,,c 2>)). <Far entity name> refers to the entity participating in RS in
the direction of the link, and <near entity name> refers to the entity participating in
RS in the direction opposite the link. <Constraint c,,c 2> limits the number of
relationship instances for a participating ES nodes to the range (c,,c 2). The default
value for (c,,c 2) is (0, -o). This is the directed edge set DE.

9. Form a directed, colored graph G = (V,E), where V consists of all nodes n such
that ( ne ES ) v (n r RS), E consists of all edges e such that e• DE, and no edge
e exists such that two nodes n of the same color are directly conected.
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Steps 1,2,3,6,and 7 are extensions to the GORDAS model which allow for object-oriented

modeling (superclass/subclass inheritance) and greater clarity of representation (graph

coloring).

Before defining the sematics of a GORDAS query, it must be mentioned that

whereas the intension of a database is modeled by an SG, the extension may also be

modeled by a directed graph called the database graph (DBG). This graph is derived from

the SG; its labeling is similar, with the notable exception that attribute values are shown to

indicate a particular instance of a node in the SG. In addition, a DBG uses the node

numbering scheme of the SG to group RS instance nodes. The mapping of SG to DBG is

beyond the scope of this paper; more details are found in Elmasri (198 1).

In order to construct a GORDAS query, one must be able to traverse the SG (and

concurrently, the DBG). This is realized via the path expression. A path expression may

be of the form [N] or [P of N], where N is a node from the SG and P is a -'refix of the

path expression. A prefix may be an attribute name, another node, or a connection name.

A connection name determines the direction of traversal in the path expression; it is

indicated by an edge label in the SG. A path expression evaluates to a single value or a set

of values from the DBG.

To see how a path expression works, refer to Figure 10. The path expression

[COMPANY] would specify the single node COMPANY in the SG, and all instances of

this node in the DBG. The path expression [division of COMPANY] would specify a set

of DIVISION nodes for each COMPANY node. In such a path expression, the directed
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graph is followed from the last reached node COMPANY to the RS node

COMPANYDIVISION via the connection name division, and followed from the RS

node via the same connection name to D!VISION. Every path expression must be

well-specified; that is, a connected path must exist from the last reached node in the path

expression (the node at the end of the expression) to any other node reached by traversing

the path expression in a direction way frrm the last reached node.

Path expression may also contain predicates. For example, the expression [Name of

employee: ( Salary > 50000) of DEPARTMENT] would indicate the names of all

instances of the set EMPLOYEE who make more than $50,000 per year and belong to a

set DEPARTMENT. Note how the path is traversed : starting at the last reached node

DEPARTMENT, the connection name employee is followed to EMPLOYEE, where the

predicate (Salary > 50000) is applied. The Name att ibute is then used with this restricted

set to specify the instances desired. Note the two prefixes in the expression : <Name > and

<employee: (Salary > 50000)>. Thus path expressions may contain nested prefixes.

A GORDAS query is specified on a schema graph SG, and retrieves information

from the corresponding database graph DBG. The query is formed from two clauses : the

GET clause and the WHERE clause (Elmasri, 1981, p.60). The GET clause contains one

or more path expressions representing SG nodes N, , 2..., N. The cartesian product C

=N 1 x N2 x ... x N. is taken, and to this set is applied the predicate P of the WHERE

clause. Each element ci of C is returned as the result set {c, , c2 , ... , ck ), where 1< k _ n

and each ci satisfies P.
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The three queries which have been written in OOPC, GOMsql, GOMql, and

ORION may now be drafted in GORDAS. First, Query 1, which requests the salary of all

presidents of companies which have a manufacturing division:

Query 14: GET Salary of president of COMPANY
WHERE division [of COMPANY] INCLUDES

(GET division of COMPANY
WHERE name = "manufacturing')

Note the use of brackets in the WHERE clause. The phrase [of COMPANY] is added for

clarity, but is not required since division is bound to COMPANY in the GET clause. The

predicate of the WHERE clause uses an operator INCLUDES to compare two sets (one

of which is a nested query) for membership in the result of the query.

Query 2 (get the name and address of all department managers who earn more than

$50,000 per year and drive a company car with a year model prior to 1985) is stated as:

Query 15: GET <Name, Address> of manager of DEPARTMENT
WHERE (Salary of manager [of DEPARYMENT] > 50000)

AND
(vehicle of manager [of DEPARThMENT] INCLUDES

GET vehicle of manager of DEPARTMENT
WHERE Year of vehicle of manager [of

DEPARTMEINT] < 1985

In this query, note that the attributes Name and Address of the ES node MANAGER are

inherited from the ES node EMPLOYEE. This represents an extension to the GORDAS

query language to allow for subclass inheritance of attributes in processing of query

statements.
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Query 3 (get the license numbers of all red mid-engine vehicles and blue long-bed

vehicles) is written in GORDAS as

Query 16: GET License of Car, License of Truck
WHERE

(Enginelocation of Car = "mid" AND Color of Car = "red")
OR
(Bed_type of Truck = "long" AND Color of Truck = "blue')

In this query, the GET clause contains two path expressions. Together these represent the

cartesian product of all DBG nodes which are cars or trucks (i.e., vehicles).

F. CONCLUSION

Several object-oriented query languages have been examined in this chapter. The

main criterion for comparison of these languages is their relative ease of understanding;

that is, semantic clarity. GORDAS is clearly the easiest to understand. A good example of

this is Query 16. Even someone with no knowledge of query language syntax could

determine what the purpose of the query is. On the other hand, OOPC expresses this (as

Query 3A ) in an arcane way, using the CLASSOF operator to make it work. GOMqi

uses the exist operator (Query 6) and a parenthetical structure which is not as easy to

evaluate logically. GOMsql (Query 10) is more lengthy to formulate than the GORDAS

version, and nesting of queries does not help the meaning. Finally, in addition to being

split into two separate queries (Query 14A, 14B), the ORION version is heavily dependent

on Smailtalk syntax.
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GORD kS was implemented during the 1980's as a stand-alone, high-level,

non-procedural query language interface based on the Entity Category Relationship

Model (ECR), an extension of the ER model incorporating generalization, subclasses, and

entity grouping based on relationship roles. Queries in this implementation are translated

to a relational algebra internal form for processing (Elmasri, 1981).

The utility of GORDAS as a semantic vehicle for query formulation is primarily due

to its natural language quality. This is a direct result of its mapping from a high-level

schema to an associated query graph, which is in turn used to write queries. Although the

semantics of GORDAS are more clear than other query languages, its overhead is much

greater; a big effort must be put into developkig a query graph in order to write queries.

Still, for an object-oriented schema, queries are more concise and understandable with this

language.
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VI. MODELING THE EWIR DATABASE

A. INTRODUCTION

The Electronic Warfare Integrated Reprogramming Database, or EWLRDB, is the

primary Department of Defense (DOD) approved source for technical parametric and

performance data on noncommunications emitters (National Air Intelligence Center,

1994). Its primary purpose is to provide an up-to-date and accurate source of information

for reprogramming United States electronic warfare (EW) combat systems such as radar

warning receivers, combat identification systems, electronic jammers, anti-radiation

missiles, and other target sensing systems. A variety of information is included in the

EWlRDB, including parametric data on radars, jammers, navigational aids, identification

friend or foe (IFF) equipment, and numerous noncommunications electronic emitters.

Secondary objectives of the EWLRDB include support of EW systems research,

development, test, and evaluation; modeling and simulation; combat operations planning;

and EW tactics and training.

The EWIRDB was developed initially by the U.S. Air Force in the 1970's but has

become a joint service product, involving input by all branches of the U.S. Armed Forces,

DOD, the National Security Agency (NSA), and various other intelligence agencies.

EWIRDB data is both observed arid assessed. The observed parameters are obtained

from the KILTING database maintained by NSA. Assessed data is provided by two

sources, Scientific and Technical Intelligence (S&TI) Centers and the Air Force
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Information Warfare Center (AFIWC). DIA (Defense Intelligence Agency) is responsible

for maintenance of the S&TI assessed data while AFIWC maintains the United States

Noncommunications Systems Database (USNCSDB). The three sources (KILTING,

S&TI Assessed Data, USNCSDB) are merged into the EWIRDB, which is maintained by

the National Air Intelligence Center (NAIC). Figure I1 illustrates this process.

INTELLIGENCE SOURCES

ForeignIU.S. Emitters (observed) Foreign E itter. (assessed) U.S. Emitters assessed)

Figure 11. EWIRDB Synthesis

Although extremely important to our nation's warfighting capabilities, the EWIRDB

is not easy to comprehend. Its format is difficult to interpret, assessed/observed codes are

not standard for all record types, and the database is generally described in terms of the

physical storage structure. The focus of this chapter is to examine the form and content of

the database, represent it as an object-oriented schema, map this schema into a high-level

model of the database, and create a GORDAS schema graph for EWIRDB queries.
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B. EWIRDB STRUCTURE

1. Storage Structure

Parametric data associated with electronic emitters is represented as a logical

tree, although the actual storage stn ,- * - ecord type. This parametric tree orders a

long list logically and hierarchically in a way that proceeds from broad characteristics

through levels of successively finer ones (National Air Intelligence Center, 1994).

Parametric data exists in subfiles of the tree structure. Subfiles are major groupings, or

subtrees, within the parametric tree which contain logically related data.

Emitter parametric data may exist in one of three tree types : (1) Pulsed/

Continuous Wave (P/CW), (2) Receiver Performance Assessment (RPA), or

(3) Electronic Countermeasures (ECM). The PCW tree is used primarily for signal

identification, the RPA tree is used in electronic countermeasures design, and the ECM

tree is used for radar electronic counter-counter measures (ECCM) applications. The

edges, or branches, of all three tree types are indexed by a number and additionally, a one

or two character subfile code. Branches which only function to connect subfiles together

are called superheaders and carry a numerical designation only. Figures 12, 13, and 14

show the top-level logical storage hierarchies for the three parametric tree types.

2. Record Format

The EWIRDB product contains many types of information in addition to

emitter parametric data. The standard storage and distribution format for this data is the

Technical Electronic Intelligence Reference File (TERF). The TERF format consists of six

different record types, which are designated SOO, SO0, S02, S03, S04, S05, and S06. A
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10 GENERAL INPORMATION (A)

II SIGNAL POWER (B) 1211 TRANSMIr ANTENNA POLARIZATION (C)

121 ANTENNA POLARIZATION 1212 RECEIVE ANTENNA POLARIZATION (Di

1213 TRANSUIT/RECEIVE ANTENNA POLARIZATION (E)

12 ANTENNA

1221 TRANSMIT ONLY ANTENNA (F)

i= RECEIVE ONLY ANTENNA (G)

122 ANTENNA OIARACTERISTICS
1223 TRANSMIT/RECEIVE ANTENNA (M4

I P/CW TREE

1311 PULSEDSIGNALSSHAPE (I)

13123 MULTIPLE PULSE GROUPS (K)

131 PULSED SIGNAL 1312 PRUPORI (J) 1

13131 RFUNE STRUCTURE (L)

1313 FREQUENCY1131 FB.QUENY [13132 PULSED RF (M)

13 PREQUENC Q"D

MODULATION CHAR
1321 CW FREQUENCY (P)

132 CW

14 ASSOCIATED SIGNALS/SYSTEMS (R) 1322 CWMODULATION (Q)

Figure 12. P/CW Parameter Tree
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1511 RECEIVER FRONT END (AB)

1512 FREQUENCY CONVERSION (AC)

151 RECEIVER PARAMETERS (AA) 1513 IF SECTION (AD)

1514 SINGLE PULSE PROCESSING (AE)

1515 MULTIPLE PULSE PROCESSING (AF)

1516 DISPLAYANDICATOR (AG)

15 RPA TREE

152 E1 I CAPABILITIES (AH)

153 SYSTEM INRORMATION (Al)

Figure 13. RPA Parameter Tree
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181 SYSTEM COMPONENTS (EB)

182 SYSTEM PLATFORM (E-)

183 ASSOCIATED SYSTEMS (ED)

18 E04 SYSTEM (EA) 184 MODULATION SYSTEM (EE)

185 TRANSMITTER SYSTEM (EF)

186 RECEIVER SYSTEM (EG)

187 ANTENNA SYSTEM (EH)
I E04 TREF

191 AUIOLIAKY DATA (EJ)

19 204 WAVER)RM (EI) 192 RPCHARACIERJST1CS (EK)

193 MODULATION (EL)

Figure 14. ECM Parameter Tree
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single emitter file may consist of multiple instances of each record type, and also record

types from different sources. For example, an emitter may have a number of S02 records,

and each of these may be derived from the KILTING, S&TI, or USNCSDB sources.

Figure 15 shows a sample emitter file with all record types and data sources. Before

proceeding to map the record types into an object-oriented schema, a description of each

type is needed.

a. Classification Record (SOO)

This record is unique in that there may be only one per emitter file It

defines the overall classification for the emitter, which is the highest classification of any

component record from the three EWLRDB input sources. The first three data fields in the

S00 are common to all the other record types. The Record Type is a string denoting the

type of TERF record (S00, ... , S05). The Source Designator is a character which

indicates the EWIRDB input source (K = KILTING, E = S&TI, U = USNCSDB). The

Notation is a five charactei alpanumeric known as the ELNOT (electronic intelligence

notation) which is unique to each emitter. The remaining two fields in the SOO are the

Classification, which shows the classification of the emitter file, and Retrieval Date,

which indicates when data was provided from KILTING (observed data only).

b. Emitter Name Record (SOM)

At least one emitter name record must be provided per emitter file. After

the first three data fields is the Emitter Name. This is string value which is the common

name for the emitter hardware (such as a radar name). Next are two fields which differ

depending on whether the data source is observed or assessed. For KILTING data, the
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SAE Code and Date of Last Significant Change follow, and for S&TI/USNCSDB, the

S&TI Code and Multiple Source Review Date occur. SAE Code is a four-character code

which indicates the agency responsible for the ELNOT, and Date of Last Significant

Change is a six-digit date code (YYMMDD) which is the date of last review of the source

KILTING database. S&TI Code and Multiple Source Review Date are the assessed data

analogs of SAE Code/Date of Last Significant Change. The last field, Parametric Update

Date, is common to assessed and observed data and provides the most recent change to

any S03, S04, or S05 record.

c. Subfile Header Record (S02)

Although this record contains no emitter parametric data, it is required for

any subtile containing parametric data. In addition to the initial three data fields, all S02

records have the next three fields in common : Subfile Tree Number, a 12-digit number

which is the parametric tree index for the subfile (see Figures 2-4); Subfile Name, a

25-character field containing the associated EWIRDB subfile name; and Subfile Code,

containing the one or two-character code for the parametric tree subfile. In observed

records only, the Technical Date precedes the Subfile Code and indicates when the last

change was made to any S03 record in the subtile.

d Parametric Data Record (S03)

The S03 record is the most useful, since it actually contains the emitter

measurement names and indexes into the parametric tree where the data is stored. For

both observed and assessed data, the first nine fields are identical. After the record type,

source code, and ELNOT, come the following fields: Tree Number, a 15-digit number
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which is the index into the parametric tree, Suffix Code, a two-character code used to

identify operating modes of the emitter; Measurement Name, a character string which is

the name of the value stored at the parametric index; Units, a string describing the scale of

data or format of text entered in the tree; Lower/Upper V/alue Text, which, for numeric

entries, gives the possible range of values which may be entered, and a single text string

otherwise.

The next two fields differ depending on the data record source. For

assessed data, Confidence Level and S&TJ Code follow; for observed data, Measurement

Accuracy and Measurement Accuracy Units. Confidence Level is a one-digit code which

is a system analyst's confidence in the parametric data; S&TI Code is the same as in the

SO 1 record. Measurement Accuracy and Measurement Accuracy Units are seven and

three-digit fields which describe the accuracy (if available) for the parametric data units.

Reference Number Comment Number, and Reserve Mode are common to

observed and assessed data. Reference Number (R = KILTING, A = S&TI, F =

USNCSDB) and Comment Number (C = KILTING, K=S&TI, N = USNCSDB) are used

to connect the S03 record to an S04 reference record or to an S05 comment record. Both

are four-character fields, the first character being the code for the data input source.

Reserve Mode is a numerical value showing (1) that an emitter mode is a wartime reserve

mode (WARM) and (2) the system analyst's confidence level in this assignment.

The next field is either Classification (assessed) or Intelligence Source

(observed). Classification provides a one-character code for classifying data in the
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Lower/Upper Value or Text fields; Intelligence Source (one-character code) is only used if

multiple intelligence sources were used to derive S03 records

The last three fields in the S03 record are Subfile Code, Releasability

KIL TING Preferential Rating, and Date of Last Update. The Releasability field,

applicable to assessed data, is a two-character code representing the countries which may

have access to the S03 data. KILTING Preferential Rating is a one-digit system analyst

rating for relative importance of different KILTING data entries. Both Subfile Code and

Date of Last Update are used by all record sources. Subfile Code is identical to the S02

entry and Date of Last Update reflects the last significant change to the parametric data.

e Reference Data Record (S04)

S04 records are used to store information on references which are

connected to parametric data record (S03) entries. These reference records enable system

analysts to trace parametric data back to source documents. All six fields are shared by

assessed and observed records; however, the last field has a different format for both

types.

After the record type, source, and ELNOT are three fields which are

identical for all source types. The Reference Number field is the same as the S03 entry,

and serves as a link to the S03 data. Line Number is a three-digit number which signifies

the line of reference text. Reference Text is a string which describes the particular

reference, but its format varies. For assessed data, this field contains information on the

published reference; the last line for each reference also contains a Llassification of the
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reference text data and its releasability to other nations. For KILTING records, the

reference text is a formatted field which contains specific information on each successive

line, such as document number, document title, report date, and producer of the

document. The last entry is the report classification, which is a text string.

f Comments Record (SO5)

This record contains two primary types of information : (1) amplifying

descriptions of data contained in the S03 records, and (2) suffix tables. A suffix table is a

matrix with rows and columns of suffix codes which may be mathematically manipulated

to calculated all possible operating modes of an emitter. A detailed examination of suffix

codes/tables is beyond the scope of this paper, but is described in National Air Intelligence

Center (1994).

The first three fields of the S05 are identical to all other TERF records, The

next three are unique to the S05. They are Comment Number, Line Number, and

Comment Text. Comment Number is identical to the entry in the S03 field; it is the link to

a parametric data record. In addition, it has a unique comment number ("0000") which is

used for listing and describing the suffix table. Line Number is analogous to the same field

in the S04 record. Comment Text contains the amplifying text (4icluding suffix table). For

assessed records only, a classification comment text line follows a series of comment lines

and provides the classification of the text preceding it. The fields in this type of comment

are Classification Code and Releasability Code (which may be blank if non-applicable).
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C. OBJECT-ORIENTED EWIRDB

The first step in developing a high-level conceptual model for the EVWIRDB is to

map the TERF record format into an object-oriented schema. This can be achieved by

converting the basic record structure into a class structure. That is, each record type in the

TERF is mapped into an object class. With such a structure, the importance of assigning

unique ELNOTs to each emitter file is no longer significant in regard to physical storage,

since unique object identifiers are assigned to each emitter file object. ELNOTS, however,

retain their importance from a logical classification viewpoint.

Figures 16 and 17 depict the TERF format in the object form of a GOOSE diagram.

This schema represents all the information contained in the various record types, but in a

more meaningful way. Whereas the TERF format tends to model data in a low-level

(physical) manner, the object schema provides an implementation (logical) model for

representing the EWIRDB. As can be readily seen, the object schema groups properties

(fields) which are common to both observed and assessed data in a single superclass for

each record type, and lists properties unique to each data type in a separate subclass. The

object model also converts some TERF fields into methods for efficiency of data retrieval.

This schema can be directly mapped into a high-level conceptual (OPERA) schema, which

in turn is used to develop a schema graph for GORDAS queries. First, it is helpful to

examine how each record is mapped into the object class structure.
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1. Emitter

This class does not correspond directly to a specific TERF record, but rather to

an entire emitter file (multiple TERF records). The property Classification has as its

domain objects of class Classification. It is also single-valued, reflecting the fact that an

emitter file has one and only one classification record. In other words, its domain is a

singleton set. The other properties of Emitter are multivalued, i.e., they return sets of

objects of the following classes EmitterName, SubfileHeader, ParametricData,

Reference-Data, and Comments.

2. Classification

The Classification object class corresponds to the SOO record. It is modeled as

a superclass with properties common to observed and assessed data, and also as a subclass

ObservedClassification for the additional property unique to KILTING data. Of course,

all KILTING data objects inherit the properties of Classification.

3. Name

This is the object counterpart to the SO1 record type. Again, there are five

properties corresponding to the SO I fields which are common to both data types, and two

subclasses, ObservedName and AssessedName, which have properties specific to

KILTING or S&TI/USNCSDB source data.

4. SubfileHeader

The SubfileHeader class contains properties analogous to the S02 record

fields, but differs in implementation. The subfile tree number and subfile name are returned

by object methods instead of properties. By passing SubfileCode as a parameter to

Subfile Tree_NR? and SubfileName, the subfile codes and tree numbers for all
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SubfileHeader objects may be retrieved by the same block of code. This allows all the

tree numbers and names to be stored centrally and eliminates the need to duplicate them in

a property for each object (or field for each record). A subclass Observed Subfile_Header

inherits these two methods (and four properties) of SubfileHeader, and includes an

additional property.

5. ParametricData
This class corresponds to the S03 record, but is distinct in several ways. First,

there are two subclasses, ObservedParametric-Data and AssessedParametricData,

with properties in addition to their superclass. Also, these subclasses inherit a method

TreeNR, which takes as parameters the subfile code and measurement name and returns

the tree number for the parametric data. As with SubfileHeader, this technique saves

storage space and allows all tree numbers to be stored once. Finally, instead of storing an

explicit reference number and comment number, Reference-Data and Comments return

sets of objects of the classes containing references and comments associated with objects

of the ParametricData class.

6. ReferenceData

This class consists of objects which are domain elements of Emitter and

ParametricData. The properties correspond to the S04 record fields, and two subclasses

exist to show the differences in classification coding between assessed and observed data.
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7. Comments

Similar to ReferenceData, this class exists in the domain of Emitter and

ParametricData and contains properties which are the fields of the S05 record type.

Only one subclass, AssessedComments, is required to model comment classification for

assessed data objects.

D. THE CONCEPTUAL EWIRDB

The object-oriented schema developed in section C may now be mapped into a

high-level conceptual model. The model used for this representation is the OPERA model

of Chapter IV. The reasons for creating a conceptual model are (1) to provide a simplified

expression of data requirements and relationships for the database end user and (2) to

furnish the producers of the database a model for the conceptual design of the EWIRDB.

Figure 18 is the OPERA representation of the object schema shown in Figures 16

and 17. Recall that individual properties and methods are excluded in order to focus on the

relationships between classes. One feature of the OPERA representation which is not

evident in the object or TERF formats is modeling of constraints. For example, the

OPERA schema clearly shows that an emitter file may be related to many subfile headers

(in fact, it must contain at least one) but a subfile header may be related to many emitter

files (or to none). In the OPERA schema such constraints are inherited by subclasses. For

example, an Observed ReferenceData object must be related to some Emitter object,

but an emitter object may be related from zero to many Observed Reference_Data

objects, since an emitter may be discovered which has no documented references.
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Similarly, an AssessedComments object must be related to at least one ParanietricData

object, since a comment cannot exist independently, and may be related to many

ParametricData objects, as is the case with suffix table comments. As a final example,

note the relationship EmitterClassification. This clearly shows that an emitter file must

have one and only one classification, and that a classification which exists in the database

must be related to some emitter file.

E. GORDAS QUERIES

Using the mapping procedure of Chapter V, a GORDAS schema graph may be

developed from the OPERA schema of Figure 18. This graph, which may be used to write

queries against the EWIRDB, is illustrated in Figure 19.

One of the functions of the suffix code is to determine the possible operating modes

of an emitter. The "++" suffix code indicates that a particular parameter has a value for all

operating modes. Suppose that a requirement exists to retrieve from the EWIRDB the

names of all emitters which have a suffix code of"++" for the parameter scan angle

coverage. This information may be extracted by the following query

Query I: GET EmitterName of name of EMITTER
WHERE (SuffixCode of parametric data [of EA17TTER] "+ +

AND
(AMeasurement of parametric data [of EMITTER] =

"scan angle coverage')

As discussed in Chapter V, the use of brackets ([1) is optional. It is used here for clarity

only.
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Suppose a user of the EWIRDB knows the common name of an electronic enitter,

but requires more specific information. For example, for the SPS- 10 surface search radar,

the ELNOT, parametric tree index, suffix table, and intelligence source for all observed

data may be obtained with Query 2 :

Query 2 : GET <Notation, TreeNr, Comments, IntelSource> of
parametric-data of EMITTER

WHERE Source of parametric data [of EMITTER] INCLUDES
GET Source of PARAMETRICDA TA
WHERE Source [of PARAMETRIC_DA TA] = "K"

AND
(Emitter-Name of name [of EMITTER] = "SPS-10')

AND
(Line-Number of comments of parametric-data

[of EMI7TE R] = "COOO")

Note how the suffix table is retrieved. Only comments with three trailing zeros belong to a

suffix table; the leading digit specifies whether the source is observed or assessed. Also,

observe the use of the nested query. This is needed to restrict the query to observed

parametric data.

The next query retrieves the subfile names of all emitters with a technical date after

March 3, 1987 and whose references are classified TOP SECRET:

Query 3 : GET SubfileName of subfile header of EAIITfE7
WHERE Source of subfileheader [of EAfI7TTER] INCLUDES

GET Source of SUBFILEHEADER
WHERE Source [of SUBFILEHEADER] = "K"

AND
(TechnicalDate of subfile header [of EAMI77ER] > 870303)

AND
(Classification of reference data ofparametric data

[of EAMITTER = "TOP SECRET')
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Query 4 retrieves the names of all emitters whose classification exceeds

CONFIDENTIAL:

Query 4: GET Emitter Name of name of EMITTER
WHERE EmitterClassification of classification [of EMITTER]

"SECRET"
OR

EmitterClassification of classification [of EMITTER] =

"TOP SECRET"

Query 4 and Query 1 are similar in form and function. Unlike the other two queries, there

is no restriction on what subclasses may be queried; emitter names associated with

observed and assessed data sources are returned in the result.

The final query to be examined uses an aggregate function operator to determine

the number of parametric data records with the best preferential rating or confidence level:

Query 5: GET COUNT of PARAMETRICDA TA
WHERE Source [of PARAAMTRIC_DA TA] INCL UDES

(GET Source of PARAMETRIC_DATA
WHERE Source [of PARAMETRICDATA] = "K"
AND Preferential_Rating [ of PARAMETRIC_DA TA] = 6)

OR
(GET Source of PARAMETRICDATA
WHERE (Source [of PARAMETRICDA TA] = "E

OR
(Source [of PARAMETRICDA TA] = "U")

AND Confidence_Level [ of PARAAE&TRICDA TA] = 1)

The two nested queries are used to restrict examination of the preferential rating to those

objects whose source is KILTING, and restrict confidence levels to those found in objects

whose source is S&TI or USNCSDB.
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F. CONCLUSION

The EWIRDB is critical to the combat effectiveness of the U.S. Armed Forces. As

the primary database for reprogramming electronic warfare system components, it must

contain correct and timely information to ensure minimal loss of life during conflict. In

peacetime, it is essential for maintaining combat readiness in the areas of tactics and.

training.

The EWIRDB, although effectively implemented, is inadequately modeled. In

particular, National Air Intelligence Center (1994) does not contain a conceptual model of

the database, but rather an implementation model. Since the EWIRDB is constantly

evolving, a high-level representation would be useful to make design changes to the

database. In addition, with the advantages object-oriented database management systems

offer, a conceptual object schema would establish a foundation from which to eventually

store the EWIRDB in the form of objects (instead of records). The schemas of Figure 16,

17, and 18 provide this basis.

In order for any database to be useful, it must have a query capability. The

GORDAS query language was chosen because of the natural way the conceptual

EWIRDB schema maps into the query graph, and the ease of query formulation. Other

query languages may be more suitable from a processing viewpoint, but such

consideration is beyond the scope of this paper.
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VII. CONCLUSIONS AND RECOMMENDATIONS

In this thesis we have proposed a conceptual model, OPERA, which takes an

object-oriented impiementation data model and abstracts it to a level of simplicity

exceeding that of the EER model. With this simplicity comes an improved understanding

of the state and behavioral characteristics of an object-oriented database. We conclude,

based on our examination of the EWIRDB, that such a conceptual refinement can be more

meaningful than a record-based relational description.

Several issues were addressed by this thesis. As a starting point, the EER was

presented as the foundation for proposing an object-oriented conceptual model. Then, a

general data model for an object-oriented database schema was established, the

implementation model of Chapter III. We determined that, by modifying the existing EER

model to incorporate database behavior, we could represent the object-oriented model in

an understandable and meaningful way. The result of this was the primary objective of the

thesis : extending the ER model into a high-level graphical representation for the

object-oriented model, called OPERA. In doing this, an intermediate schematic

representation, GOOSE, was used to aid in transformation from an implementation to a

conceptual schema. We also demonstrated the mathematical relation to be a basis for

modeling database behavior in OPERA.

Object-oriented query languages were compared in Chapter V. An extension of the

GORDAS query language, adapted for use with object-oriented schemas, was proposed.
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By converting an OPERA schema to a GORDAS query graph, we showed how queries

could be formulated which were easier to understand than the same ones in other

object-oriented query languages.

Finally, we applied the OPERA model to a real-world database, the EWIRDB This

database was determined to be a good candidate for analysis because it is (1) critical to

U.S. Armed Forces combat capability, (2) inadequately modeled on a conceptual level,

and (3) stored in a relational, record-based format. The EWIRDB was successfully

mapped from a relational to an object-oriented schema and converted to an OPERA

diagram. The OPERA schema was shown to be semantically superior to the EWIRDB

record. In particular, superclass/subclass relationships were illustrated which were hidden

in the relational schema. Finally, the OPERA schema was mapped to an object GORDAS

schema graph, and relevant queries were formulated against the EWIRDB.

The OPERA model has some limitations. For example, object versions are not

addressed. This is a very important part of complex database modeling, and should be

incorporated as an enhancement. Another area for future investigation is that of database

constraints. OPERA only models constraints inherent to the EER model; any additional

constraints must be incorporated as methods. For advanced constraints, such as those

required to enforce the invariants of schema evolution, some standard way of representing

these in OPERA is needed. Also, an investigation into alternate object-oriented query

languages, such as those supporting functional data models, would supplement the work

done with GORDAS in this thesis. Also, since the EWIRDB is basically a relational
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database, OPERA should be used to describe an existing object-oriented database with

complex modeling requirements.
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